Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis

23 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heterogeneous catalytic reactions are influenced by a subtle interplay of atomic-scale factors, ranging from the catalysts’ local morphology to the presence of high adsorbate coverages. Describing such phenomena via computational models requires generation and analysis of a large space of surface atomic configurations. To address this challenge, we present the Adsorbate Chemical Environment-based Graph Convolution Neural Network (ACE-GCN), a screening workflow that can account for atomistic configurations comprising diverse adsorbates, binding locations, coordination environments, and substrate morphologies. Using this workflow, we develop catalyst surface models for two illustrative systems: (i) NO adsorbed on a Pt3Sn(111) alloy surface, of interest for nitrate electroreduction processes, where high adsorbate coverages combine with the low symmetry of the alloy substrate to produce a large configurational space, and (ii) OH* adsorbed on a stepped Pt(221) facet, of relevance to the Oxygen Reduction Reaction, wherein the presence of irregular crystal surfaces, high adsorbate coverages, and directionally-dependent adsorbate-adsorbate interactions result in the configurational complexity. In both cases, the ACE-GCN model, having trained on a fraction (~10%) of the total DFT-relaxed configurations, successfully ranks the relative stabilities of unrelaxed atomic configurations sampled from a large configurational space. This approach is expected to accelerate development of rigorous descriptions of catalyst surfaces under in-situ conditions.

Keywords

Heterogeneous catalysis
Density-functional theory
Machine-learning
Graph networks

Supplementary materials

Title
Description
Actions
Title
Supplemental information for Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis
Description
Additional information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.