Hidden Hemibonding in the Aqueous Hydroxl Radical

15 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The existence of a two-center, three-electron hemibond in the first solvation shell of OH(aq) has long been a matter of debate. The hemibond manifests in ab initio molecular dynamics simulations as a small-r feature in the oxygen radial distribution function (RDF) for H2O...OH, but that feature disappears when semilocal density functionals are replaced with hybrids, suggesting a self-interaction artifact. Using periodic simulations at the PBE0+D3 level, we demonstrate that the hemibond is actually still present (as evidenced by delocalization of the spin density onto nearby water molecules) but is obscured by the hydrogen-bonded feature in the RDF, due to a slight elongation of the hemibond. Computed electronic spectra for OH(aq) are in excellent agreement with experiment and confirm that hemibond-like configurations play an outsized role in the spectroscopy due to an intense charge-transfer transition that is strongly attenuated in hydrogen-bonded configurations. Apparently, 25% exact exchange does not eliminate delocalization of unpaired spins.

Keywords

time-dependent density functional theory
self-interaction error
density functional theory
radicals

Supplementary materials

Title
Description
Actions
Title
Supporting Information for "Hidden Hemibonding in the Aqueous Hydroxyl Radical"
Description
Additional data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.