Investigating Novel Thiazolyl-Indazole Derivatives as Scaffolds for SARS-Cov-2 MPro Inhibitors

13 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

COVID-19 is a global pandemic caused by infection with the SARS-CoV-2 virus. Remdesivir, a SARS-CoV-2 RNA polymerase inhibitor, is the only drug to have received widespread approval for treatment of COVID-19. The SARS-CoV-2 main protease enzyme (MPro), essential for viral replication and transcription, remains an active target in the search for new treatments. In this study, the ability of novel thiazolyl-indazole derivatives to inhibit MPro is evaluated. These compounds were synthesized via the heterocyclization of phenacyl bromide with (R)-carvone and (R)-pulegone thiosemicarbazones. The binding affinity and atomistic interactions of each compound were evaluated through Schrödinger Glide docking, AMBER molecular dynamics simulations, and MM-GBSA free energy estimation, and these results were compared with similar calculations of MPro binding various 5-mer substrates (VKLQA, VKLQS, VKLQG). From these simulations, we can see that binding is driven by residue specific interactions such as π-stacking with His41, and S/π interactions with Met49 and Met165. The compounds were also experimentally evaluated in a MPro biochemical assay and the most potent compound containing a phenylthiazole moiety inhibited protease activity with an IC50 of 92.9 µM. This suggests that the phenylthiazole scaffold is a promising candidate for the development of future MPro inhibitors.

Keywords

SARS-CoV-2
coronavirus
COVID-19
MPro
protease
substrate
indazole
thiazolyl
thiazolyl-indazole
inhibitors
scaffold
molecular dynamics
binding assay
drug discovery

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Additional data referenced in the manuscript
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.