Supervised Machine Learning Classification Algorithms for Detection of Fracture Location in Dissimilar Friction Stir Welded Joints

12 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Machine Learning focuses on the study of algorithms that are mathematical or statistical in nature in order to extract the required information pattern from the available data. Supervised Machine Learning algorithms are further sub-divided into two types i.e. regression algorithms and classification algorithms. In the present study, four supervised machine learning-based classification models i.e. Decision Trees algorithm, K- Nearest Neighbors (KNN) algorithm, Support Vector Machines (SVM) algorithm, and Ada Boost algorithm were subjected to the given dataset for the determination of fracture location in dissimilar Friction Stir Welded AA6061-T651 and AA7075-T651 alloy. In the given dataset, rotational speed (RPM), welding speed (mm/min), pin profile, and axial force (kN) were the input parameters while Fracture location is the output parameter. The obtained results showed that the Support Vector Machine (SVM) algorithm classified the fracture location with a good accuracy score of 0.889 in comparison to the other algorithms.

Keywords

Fracture Location
Friction Stir Welding
Machine Learning
Aluminum Alloys
Artificial Intelligence

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.