Hidden Lewis acidity: Studies on the medium and structure dependent fluorescence of zinc(II) complexes

29 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three new zinc(II) coordination units [Zn(1–3)] based on planar-directing tetradentate Schiff base-like ligands H2(1–3) were synthesized. Their solid-state structures were investigated by single crystal X-ray diffraction, showing the tendency to overcome the square-planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by multiconfiguration pair-DFT to validate the results of extended TD-DFT studies. Green emission of fluorescence-silent solutions of [Zn(1–3)] in chloroform could be switched on in the presence of potent Lewis-bases. While interpretation in terms of an equilibrium of stacked/non-fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1–3)] was greatly reduced. Results of a computation-based structure search allow to trace the hidden Lewis acidity of [Zn(1–3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers.

Keywords

Zinc
Fluorescent
Dimerization
Schiff Base
CASSCF
MC-PDFT

Supplementary materials

Title
Description
Actions
Title
Hidden Lewis acidity: Studies on the medium and structure dependent fluorescence of zinc(II) complexes
Description
This file contain the relevant supporting material.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.