Surface NMR Using Quantum Sensors in Diamond

23 June 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Characterization of the molecular properties of surfaces under ambient or chemically reactive conditions is a fundamental scientific challenge. Nuclear magnetic resonance (NMR) spectroscopy would be the ideal technique, however it lacks the sen-sitivity to probe the small number of spins at interfaces. Here we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect NMR signals from chemically modified thin films. Aluminum oxide (Al2O3) layers, common supports in catalysis and materials science, are prepared by atomic layer deposition and are subsequently functionalized by phosphonate chemistry to form self-assembled monolayers (SAMs). The surface NV-NMR technique detects NMR signals from the monolayer, indicates chemical binding, and quantifies molecular coverage. In addition, it can monitor in real-time the formation kinetics at the solid-liquid interface. This work demonstrates the capability of NV quantum sensors as a sur-face-sensitive (femtomole) NMR tool for in-situ analysis in catalysis, materials and biological research.

Keywords

Nitrogen Vacancy Centers
Self Assembled Monolayers
Nuclear magnetic resonance (NMR)

Supplementary materials

Title
Description
Actions
Title
Supplementary Information for Surface NMR using quantum sensors in diamond
Description
Supplementary notes and figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.