Predicting stable lithium iron oxysulphides for battery cathodes

22 June 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cathode materials that have high specific energies and low manufacturing costs are vital for the scaling up of lithium-ion batteries (LIBs) as energy storage solutions. We perform an extensive computational search for iron-based oxysulphides using ab initio random structure searching (AIRSS). Several new oxysulphide phases have been discovered which are predicted to be less than 50 meV/atom from the convex hull. Among the predicted phases, two anti-Ruddlesden-Popper structured materials Li2Fe2S2O and Li4Fe3S3O2 have been found to be attractive as they have high theoretical capacities. With band gaps as low as about 2.0 eV, they are expected to exhibit good electronic conductivities. Climbing-image NEB calculations show that the Li-ion transport in these materials has low activation barriers between 0.3 eV and 0.5 eV. The richness of new materials in the Li-Fe-S-O phase field illustrate the great opportunity in these mixed anion systems for energy storage applications and beyond.

Keywords

dft
crystal structure prediction
lithium-ion battery
cathode material
oxysulphides

Supplementary materials

Title
Description
Actions
Title
Electronic supplementary information for: Predicting stable lithium iron oxysulphides for battery cathodes
Description
Supporting information for the main paper.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.