Abstract
Lipopolysaccharide activates the natural immune system response in obese and diabetic patients’ adipose tissue and increases the risk of susceptibility and severity of COVID-19. In this study, bioinformatics techniques such as domain search and molecular docking were used to study the relationship between the ORF7a protein of the SARS-COV-2 virus and lipopolysaccharide. The results show that the transmembrane protein ORF7a has ABC transporter domains: ATP binding and ABC transmembrane domains. ORF7a also has lipopolysaccharide synthesized domains. It bound the lipopolysaccharide synthesized by ORF7a to CD14 molecule through lipopolysaccharide-binding protein (LBP) to activate CD14+ monocytes. The extracellular ORF7a with the N-terminus and C-terminus cut off has a similar function of LBP, binding and activating CD14+ monocytes with the help of two ATP-binding structures. We speculated that more lipopolysaccharides also activated CD14+ monocytes to release various inflammatory factors, damaging adipose and vascular endothelial tissue to induce diabetes and hypertension.