Mixing and Flow-Induced Silk Fibroin Self-Assembly in Microfluidic and Semi-Batch Nanoprecipitation

15 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here, we report the modulation of silk fibroin self-assembly by varying factors which control shear and mixing during nanoprecipitation in semi-batch and micro-mixers. For feeds processed at low shear in a semi-batch format, the properties of secondary assemblies (nanoparticles) were scalable by reducing the mixing time by stirring (0 < 400 rpm). For low mixing times, moving from low to high shear processing increased the extent of self-assembly (0.017 < 16.96 mL min-1) for 0.5, 2 and 3% w/v silk. In high shear regimes, the size and polydispersity index of assemblies decreased with mixing time, as stirring rate (800, 400 < 0 rpm) and feed addition height (3.5 < 0 cm) increased. Finally, in conditions of high shear and low mixing time, the feed concentration controlled the assembly shape, size, and polydispersity index in microfluidic (0.5, 3.0 < 2% w/v) and semi-batch format (3.0 < 0.5% w/v). This work provides new insight into the manufacture of low polydispersity, spherical and worm-like silk nanoparticles.

Keywords

silk fibroin
nanoprecipitation
self-assembly
nanoparticle
biopolymer

Supplementary materials

Title
Description
Actions
Title
Supporting Information Saphia 14 06 21
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.