Water vapor induced self-assembly of islands/honeycomb structure by secondary phase separation in polystyrene solution with bimodal molecular weight distribution

07 May 2021, Version 7
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The formation of complex structures in thin films is of interest in many fields. Segregation of polymer chains of different molecular weights is a well-known process. However, here, polystyrene with bimodal molecular weight distribution, but no additional chemical modification was used. It was proven that at certain conditions, the phase separation occurred between two fractions of bimodal polystyrene/methyl ethyl ketone solution. The films were prepared by spin-coating, and the segregation between polystyrene phases was investigated by force spectroscopy. Next, water vapour induced secondary phase separation was investigated. The introduction of moist airflow induced the self-assembly of the lower molecular weight into islands and the heavier fraction into a honeycomb. As a result, an easy, fast, and effective method of obtaining island/honeycomb morphologies was demonstrated. The possible mechanisms of the formation of such structures were discussed.

Keywords

polymer blends structures
phase segregation processes
honeycomb film morphology
micropillar
Self assembly
Thin Film
polystyrene surfaces
bimodal distribution polymer

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions
Title
Supporting information may21
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.