Abstract
Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission colour of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) could be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process. The nontraditional photoluminescence with AIE property was from the new formed p-band state, resulting from the strong overlapping of p orbitals of the clustered O atoms though space interactions. Hydrated hydroxide complexes embedded in the entangled polymer chain make big difference on the clustering of O atoms which dominates the AIE property of nonconjugated PMVEMA. These new insights into the photoemission mechanism of NTIL should stimulate additional experimental and theoretical studies and could benefit the molecular-level design of nontraditional chromophores for optoelectronics and other applications.
Supplementary materials
Title
ChemRixv-SI-2021.5.20
Description
Actions