501Y.V2 Spike Protein Resists the Antibody in Atomistic Simulations

24 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

SARS-CoV-2 Spike (S) protein is a major biological target for COVID-19 vaccine design. Unfortunately, recent reports indicated that Spike (S) protein mutations can lead to antibody resistance. However, understanding the process is limited, especially at the atomic scale. The structural change of S protein and neutralizing antibody fragment (FAb) complexes was thus probed using molecular dynamics (MD) simulations. In particular, backbone RMSD of the 501Y.V2 complex was significantly larger than that of the WT implying a large structural change of the mutation system. Moreover, the mean of , CCS, and SASA are almost the same when compared two complexes, but the distribution of these values are absolutely different. Furthermore, the free energy landscape of the complexes was significantly changed when the 501Y.V2 variant was induced. The binding pose between S protein and FAb was thus altered. The FAb-binding affinity to S protein was thus reduced due to revealing over steered-MD (SMD) simulations. The observation is in good agreement with the respective experiment that the 501Y.V2 SARS-CoV-2 variant can escape from neutralizing antibody (NAb).

Keywords

Spike proteins
SARS-CoV-2
Antibody Resistance
501Y.V2 variant
B.1.351 variant
SMD
MD simulations
FEL

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.