Exchange Functionals and Basis Set Comparisons for Theoretical Studies of ZnO Nonoclusters

17 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Catalysts made of nano-scaled metal oxide clusters can push the limits of chemical reactions in the manufacture of paints, cosmetics, and pharmaceuticals. The ZnO clusters can also act as semiconductors with a wide band gap of 3.4 eV at 300 K, and are prospective phoocatalysts in many reactions including H2 production in water splitting reactions. In this project, we studied the structural (geometry) and electronic properties (vertical detachment energy and electron affinity) of ZnO monomers and dimers that form model ZnO clusters, using density functional theory (DFT) with many different exchange functionals and 29 basis sets to optimize their choice. We compared the singlet-triplet energy gaps of small ZnO clusters to find the optimal ZnO cluster size and the best theoretical method to investigate their photocatalytic water splitting activity. Our results show that B3LYP/DGDZVP2 level of exchange functional/basis set theory is the most efficient and fastest of the ones considered. Comparison of the singlet-triplet energy gaps shows that the trimer (ZnO)3, with an energy gap of 58.66 k cal/mol, is approximately equal to the energy of a visible photon at 555 nm and a HOMO-LUMO gap of 4.4 eV, and is the best choice amongst the (ZnO)n clusters of different sizes when the number of monomers n in the clusters ranges from 1 to 6. We used the Gaussian16 software package for all the calculations.

Keywords

Zinc Oxide Clusters
Density Functional Theory
Basis Set Comparison
Exchange functional
Vertical Detachment Energy
Electron Affinity

Supplementary materials

Title
Description
Actions
Title
SI basis set comparison of ZnO
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.