Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates

12 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The role of hydrophobicity, and particularly nonionic hydrophobic comonomers, on the phase behavior of polyelectrolyte complex coacervates is not well-understood. Here, we address this problem by synthesizing a library of polymers with a wide range of charge densities and nonionic hydrophobic side chain lengths, and characterizing their phase behavior by optical turbidity. The polymers were prepared by post-polymerization modification of poly(N-acryloxy succinimide), targeting charge densities between 40 and 100% and nonionic aliphatic sidechains with lengths from 0 to 12 carbons long. Turbidity measurements on pairs of polycations and polyanions with matched charge densities and nonionic sidechain lengths revealed a complex salt response with distinct charge density-dominated and hydrophobicity-dominated regimes. The polymer solubilities were not directly correlated with the phase behavior of the coacervates, indicating the difficulty of understanding the coacervate phase behavior in terms of the polymer-water interaction parameter. This result suggests that there is significant room for further work to understand the mechanisms by which specific molecular-scale interactions moderate the phase behavior of complex coacervates.

Keywords

Complex Coacervates
Post-polymerization Functionalization

Supplementary materials

Title
Description
Actions
Title
JH-2020-hydrophobicity-SI-20210510
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.