Abstract
The role of hydrophobicity, and particularly nonionic hydrophobic comonomers, on the phase behavior of polyelectrolyte complex coacervates is not well-understood. Here, we address this problem by synthesizing a library of polymers with a wide range of charge densities and nonionic hydrophobic side chain lengths, and characterizing their phase behavior by optical turbidity. The polymers were prepared by post-polymerization modification of poly(N-acryloxy succinimide), targeting charge densities between 40 and 100% and nonionic aliphatic sidechains with lengths from 0 to 12 carbons long. Turbidity measurements on pairs of polycations and polyanions with matched charge densities and nonionic sidechain lengths revealed a complex salt response with distinct charge density-dominated and hydrophobicity-dominated regimes. The polymer solubilities were not directly correlated with the phase behavior of the coacervates, indicating the difficulty of understanding the coacervate phase behavior in terms of the polymer-water interaction parameter. This result suggests that there is significant room for further work to understand the mechanisms by which specific molecular-scale interactions moderate the phase behavior of complex coacervates.
Supplementary materials
Title
JH-2020-hydrophobicity-SI-20210510
Description
Actions