Photoinduced Copper-Catalyzed Asymmetric C-O Cross-Coupling

10 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Whereas considerable advances have recently been achieved in radical-involved catalytic asymmetric C-N bond formation, there has been little progress in the corresponding C-O bond-forming processes. Here we describe a photoinduced copper-catalyzed cross-coupling of readily oxime esters and 1,3-dienes to generate diversely substituted allylic esters with high regio- and enantioselectivity (>75 examples; up to 95% ee). The reaction proceeds at room temperature under excitation by purple light-emitting diodes and features the use of a single, earth-abundant copper-based chiral catalyst as both the photoredox catalyst for radical generation and the source of asymmetric induction in C-O coupling. Combined experimental and DFT computational studies suggest the formation of π-allylcopper complex from redox-active oxime esters as bifunctional reagents and 1,3-dienes through a radical-polar crossover process.

Keywords

enantioselective C-O couplin
photoredox catalysis
copper catalysis
1,3-dienes
allylic esters

Supplementary materials

Title
Description
Actions
Title
Supporting Information-20210507
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.