Sulphur and Molybdenum Incorporation at the Calcite-Water Interface: Insights from Ab Initio Molecular Dynamics

07 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sulphur and molybdenum trace impurities in speleothems (stalagmites and stalactites) can provide long and continuous records of volcanic activity, which are important for past climatic and environmental reconstructions. However, the chemistry governing the incorporation of the trace-element bearing species into the calcium carbonate phases forming speleothems is not well understood. Our previous work has shown that substitution as tetrahedral oxyanions [XO4]2- (X=S, Mo) replacing [CO3]2- in CaCO3 bulk phases (except perhaps for vaterite) is thermodynamically unfavourable with respect to the formation of competing phases, due to the larger size and different shape of the [XO4]2- tetrahedral anions in comparison with the flat [CO3]2- anions, which implied that most of the incorporation would happen at the surface rather than the bulk of the mineral. Here we present an ab initio molecular dynamics study exploring the incorporation of these impurities at the mineral-water interface. We show that the oxyanions substitution at the aqueous calcite (10.4) surface is clearly favoured over bulk incorporation, due to the lower structural strain on the calcium carbonate solid. Incorporation at surface step sites is even more favourable for both oxyanions, thanks to the additional interface space afforded by the surface line defect to accommodate the tetrahedral anion. Differences between sulphate and molybdate substitution can be mostly explained by the size of the anions. The molybdate oxyanion is more difficult to incorporate in the calcite bulk than the smaller sulphate oxyanion. However, when molybdate is substituted at the surface, the elastic cost is avoided because the oxyanion protrudes out of the surface and gains stability via the interaction with water at the interface, which in balance results in more favourable surface substitution for molybdate than for sulphate. The detailed molecular-level insights provided by our calculations will be useful to understand the chemical basis of S- and Mo-based speleothem records.

Keywords

calcite
sulphate
molybdate
stalagmites
volcanic activity records
ab initio molecular dynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.