Abstract
We investigate a new strategy to enhance thermally activated delayed fluorescence (TADF) in organic light-emitting diodes (OLEDs). Given that the TADF rate of a molecule depends on its conformation, we hypothesize that there exists a conformation that maximizes the TADF rate. In order to test this idea, we use time-dependent density functional theory (TD-DFT) to simulate the TADF rates of several TADF emitters, while shifting their geometries towards higher TADF rates in a select subspace of internal coordinates. We find that geometric changes in this subspace can increase the TADF rate up to three orders of magnitude with respect to the minimum energy conformation, and the simulated TADF rate can even be brought into the submicrosecond timescales under the right conditions. Furthermore, the rate enhancement can be maintained with a conformational energy that are within the reach of modern synthetic chemistry. Analyzing the maximum TADF conformation, we extract a number of structural motifs that might provide a useful handle on the TADF rate of a donor-acceptor (DA) system. The incorporation of conformational engineering into the TADF technology could usher in a new paradigm of OLEDs.
Supplementary materials
Title
si
Description
Actions