Free-base Porphyrin Polymer for Bifunctional Electrochemical Water Splitting

21 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones.


Keywords

Water splitting
Metal-free
Bifunctional Electrocatalysis

Supplementary materials

Title
Description
Actions
Title
SI-Free-Base porphyrin polymer for bifunciotal water splitting
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.