Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-π Model

19 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The π-contribution to the magnetically induced current densities, ring-current strengths, and induced magnetic fields of large planar molecules (as kekulene) and three-dimensional molecules (as [10]cyclophenacene and chiral toroidal nanotubes C2016 and C2196) have been computed using the pseudo-π model with the gauge-including magnetically induced currents method. The magnetic response analysis shows that π-electrons are the main actors of the electron delocalization in carbon systems regardless of their size, suggesting that the π- component of the ring-current strengths can be used for assessing the aromatic character of this kind of molecules. Computations using the pseudo-π model yield current densities and induced magnetic fields that are not contaminated by contributions from core and σ-electrons allowing investigations of large molecular structures as polycyclic aromatic hydrocarbons and cylindrical or toroidal carbon nanotubes.

Keywords

aromaticity descriptors
Magnetic Responses
GIMIC
ring current
Induced Magnetic Field

Supplementary materials

Title
Description
Actions
Title
pseudo currents SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.