Additives for Ambient 3D Printing with Visible Light

09 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With 3D printing we desire to be “limited only by our imagination”, and although remarkable advancements have been made in recent years the scope of printable materials remains narrow compared to other forms of manufacturing. Light-driven polymerization methods for 3D printing are particularly attractive due to unparalleled speed and resolution, yet the reliance on high energy UV/violet light in contemporary processes limits the number of compatible materials due to pervasive absorption, scattering, and degradation at these short wavelengths. Such issues can be addressed with visible light photopolymerizations. However, these lower-energy methods often suffer from slow reaction times and sensitivity to oxygen, precluding their utility in 3D printing processes that require rapid hardening (curing) to maximize build speed and resolution. Herein, multifunctional thiols are identified as simple additives to enable rapid high resolution visible light 3D printing under ambient (atmospheric O2) conditions that rival modern UV/violet-based technology. The present process is universal, providing access to commercially relevant acrylic resins with a range of disparate mechanical responses from strong and stiff to soft and extensible. Pushing forward, the insight presented within this study will inform the development of next generation 3D printing materials, such as multicomponent hydrogels and composites.

Keywords

3D Printing
Digital Light Processing
Visible Light Photochemistry
Photocuring

Supplementary materials

Title
Description
Actions
Title
SI-Additives for Ambient 3DP ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.