Abstract
Abstract: Investigations of Li metal and ionic compounds through
experimental and theoretical spectroscopy has been of tremendous interest due
to their prospective applications in Li-metal and Li-ion batteries. Li K-edge
soft X-ray absorption spectroscopy (sXAS) provides the most direct
spectroscopic characterization; unfortunately, due to the low core-level energy
and the highly reactive surface, Li-K sXAS of Li metal has been
extremely challenging, as evidenced by many controversial reports. Here, through
controlled and ultra-high energy resolution experiments of two kinds of in-situ
prepared samples, we report the intrinsic Li-K sXAS of Li-metal that displays
a prominent leading peak, which has never been revealed before. Furthermore, theoretical
simulations show that the Li-K sXAS is strongly affected by the response
of the valence electrons to the core-hole due to the low number of valence
electrons in Li. We successfully reproduce the Li-K sXAS by state-of-the-art
calculations with considerations of a number of relevant parameters such as
temperature, resolution, and especially contributions from transitions which
are forbidden in the so-called single-particle treatment. Such a comparative
experimental and theoretical investigation is further extended to a series of
Li ionic compounds, which highlight the importance of considering the total and
single-particle energies for obtaining an accurate alignment of the spectra.
Our work provides the first reliable Li-K sXAS of Li metal surface with advanced
theoretical calculations. The experimental and theoretical results provide a
critical benchmark for studying Li surface chemistry in both metallic and ionic
states.