Interfacially-Adsorbed Particles Enhance the Self-Propulsion of Oil Droplets in Aqueous Surfactant

29 March 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We have demonstrated that adsorption of silica nanoparticles at the interface of a solubilizing oil droplet in surfactant solution can significantly accelerate the droplets’ self-propulsion speed. Using fluorescent particle visualization, we correlated the degree of particle surface coverage on bromodecane droplets to the droplet speed in TX surfactant. Slowest speeds were found at the lowest and highest surface coverages and the fastest speeds were achieved at intermediate surface coverages of about 40%. The particle-assisted propulsion acceleration was further demonstrated in nonionic, anionic, and cationic surfactants and a range of oils with varying solubilization rates. We propose that particles at the droplet interface hinder solubilization by displacing oil-water interfacial area, providing asymmetry in the distribution of oil-filled micelles along the droplet surface and accelerating Marangoni flow. We describe a fluid-mechanical model to rationalize the effect of the particles by considering the effect of a non-symmetrical distribution of solubilized oil at the droplet surface. Approaches by which to modulate the distribution of solubilization across droplet interfaces may provide a facile route to tuning active colloid speeds and dynamics.

Keywords

emulsion
droplets
active matter

Supplementary materials

Title
Description
Actions
Title
Video S1
Description
Actions
Title
Video S2
Description
Actions
Title
Video S3
Description
Actions
Title
Video S4
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.