Providing the ‘Best’ Lipophilicity Assessment in a Drug Discovery Environment

25 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lipophilicity is a fundamental structural property that influences almost every aspect of drug discovery. Within Pfizer, we have two complementary high-throughput screens for measuring lipophilicity as a distribution coefficient (LogD) – a miniaturized shake-flask method (SFLogD) and a chromatographic method (ELogD). The results from these two assays are not the same (see Figure 1), with each assay being applicable or more reliable in particular chemical spaces. In addition to LogD assays, the ability to predict the LogD value for virtual compounds is equally vital. Here we present an in-silico LogD model, applicable to all chemical spaces, based on the integration of the LogD data from both assays. We developed two approaches towards a single LogD model – a Rule-based and a Machine Learning approach. Ultimately, the Machine Learning LogD model was found to be superior to both internally developed and commercial LogD models.

Keywords

QSAR
logD
Machine LearningThe chemical composition

Supplementary materials

Title
Description
Actions
Title
PfizerPFLogD-CKeefer NWoody GChang
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.