Statistical Treatment of Activity and Durability of Electrocatalysts with Distributed Binding Energies

19 March 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a statistical treatment of the catalytic activity and durability of nonhomogeneous electrocatalysts that possess distributed binding energies of reaction intermediates. The treatment is simple, generic, and amenable to analytical solutions. It is revealed that the highest overall catalytic activity is obtained with a suitable level of nonhomogeneity that is commensurate with the average property. The evolution of the binding energy distribution is described by the Fokker-Planck theory. Exponential decay of the catalytic activity is predicted theoretically and confirmed experimentally. The exponential decay shows one- or two stages, depending on the initial distribution properties. The present work represents a step toward closing the gap between ideal and practical electrocatalysts using statistical considerations.

Keywords

Electrocatalysis
Statistical analysis
Activity and durability
Volcano plot

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.