Revisiting the Electronic Structure of Cobalt-Porphyrin Nitrene and Carbene Radicals with NEVPT2-CASSCF Calculations: Doublet versus Quartet Ground States

22 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cobalt-porphyrin complexes are established catalysts for carbene and nitrene radical group transfer reactions. The key carbene, mono- and bis-nitrene radical complexes coordinated to [Co(TPP)] (TPP = tetraphenylporphyrin) have previously been investigat-ed with a variety of experimental techniques and supporting (single-reference) DFT calculations that indicated doublet (S = ½) ground states for all three species. In this contribution we revisit their electronic structures with multireference NEVPT2-CASSCF calculations to investigate possible multireference contributions to the ground state wavefunctions. The carbene ([CoIII(TPP)(•CHCO2Et)]) and mono-nitrene ([CoIII(TPP)(•NNs)]) radical complexes were confirmed to have uncomplicated doublet ground states, although a higher carbene or nitrene radical character and a lower Co‒C/N bond order was found in the NEVPT2-CASSCF calculations. Supported by EPR analysis and spin counting, paramagnetic molar susceptibility determination and NEVPT2-CASSCF calculations, we report that the cobalt-porphyrin bis-nitrene complex ([CoIII(TPP•)(•NNs)2]) has a quartet (S = 3/2) spin ground state, with a thermally assessable multireference & multideterminant ‘broken-symmetry’ doublet spin excited state. A spin flip on the porphyrin-centered unpaired electron allows for interconversion between the quartet and broken-symmetry doublet spin states, with an approximate 10- and 200-fold higher Boltzmann population of the quartet at room tempera-ture or 10 K, respectively.

Keywords

cobalt-porphyrin
carbene
nitrene
radical
spin state
DFT
CASSCF

Supplementary materials

Title
Description
Actions
Title
Supporting Information CoTPP CASSCF V3
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.