REDIAL-2020: A Suite of Machine Learning Models to Estimate Anti-SARS-CoV-2 Activities

04 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Strategies for drug discovery and repositioning are an urgent need with respect to COVID-19. We developed "REDIAL-2020", a suite of machine learning models for estimating small molecule activity from molecular structure, for a range of SARS-CoV-2 related assays. Each classifier is based on three distinct types of descriptors (fingerprint, physicochemical, and pharmacophore) for parallel model development. These models were trained using high throughput screening data from the NCATS COVID19 portal (https://opendata.ncats.nih.gov/covid19/index.html), with multiple categorical machine learning algorithms. The “best models” are combined in an ensemble consensus predictor that outperforms single models where external validation is available. This suite of machine learning models is available through the DrugCentral web portal (http://drugcentral.org/Redial). Acceptable input formats are: drug name, PubChem CID, or SMILES; the output is an estimate of anti-SARS-CoV-2 activities. The web application reports estimated activity across three areas (viral entry, viral replication, and live virus infectivity) spanning six independent models, followed by a similarity search that displays the most similar molecules to the query among experimentally determined data. The ML models have 60% to 74% external predictivity, based on three separate datasets. Complementing the NCATS COVID19 portal, REDIAL-2020 can serve as a rapid online tool for identifying active molecules for COVID-19 treatment. The source code and specific models are available through Github (https://github.com/sirimullalab/redial-2020), or via Docker Hub (https://hub.docker.com/r/sirimullalab/redial-2020) for users preferring a containerized version.

Keywords

Drug Repurposing
Drug Discovery
SARS-CoV-2
COVID-19
Machine Learning
Artifical Intelligence
Redial-2020
Redial

Supplementary materials

Title
Description
Actions
Title
REDIAL External Predictivity SI Tables
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.