Site-Selective Palladium-Catalyzed Oxidation of Glucose in Glycopeptides

18 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here we report a novel method of site-selective oxidation of glucose moieties on individual glycopeptides and on a mixture of tryptic glycopeptides. The organometallic catalyst [(neocuproine)PdOAc]2OTf2, that was previously shown to perform regioselective C3-oxidation of glucosides, was used in the scope of this work. The selectivity of the catalyst towards glucose and the sensitivity of specific amino acid residues to oxidation was explored by screening a select panel of glycopeptides in the oxidation reactions. We reveal that glucosylated peptides are more readily oxidized compared to galactosylated peptides, and Thr/Ser-oxidation is a concomitant side-reaction. The oxidation methodology was also applied to the complex mixture of tryptic glucopeptides that was generated from the fragment of Haemophilus influenzae adhesin glycoprotein. The resulting keto-group of the glucose was further transformed into an oxime functionality, which allows introduction of various groups of interest. The methodology outlined in this work will allow to perfrom late-stage modification of glucopeptides as well as selective oxidation and functionalization of tryptic glucopeptides for proteomics analysis.

Keywords

Pd-catalyst
Oxidation
Glycopeptides
Oxime formation
Tryptic glycopeptides
Proteomics
Haemophilus influenzae

Supplementary materials

Title
Description
Actions
Title
SI tryptic peptides
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.