Insights into Elution of Anion Exchange Cartridges: Opening the Path towards Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers

18 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aliphatic nucleophilic substitution (SN2) with [18F]fluoride is the most widely applied method to prepare 18F-labeled positron emission tomography (PET) tracers. Strongly basic conditions commonly used during 18F-labeling procedures inherently limit or prohibit labeling of base-sensitive scaffolds. The high basicity stems from the tradition to trap [18F]fluoride on anion exchange cartridges and elute it afterwards with basic anions. This sequence is used to facilitate the transfer of [18F]fluoride from an aqueous to an aprotic organic, polar reaction medium, which is beneficial for SN2 reactions. Furthermore, this sequence also removes cationic radioactive contaminations from cyclotron-irradiated [18O]water from which [18F]fluoride is produced. In this study, we developed an efficient elution procedure resulting in low basicity that permits SN2 18F-labeling of base-sensitive scaffolds. Extensive screening of trapping and elution conditions (>1000 experiments) and studying their influence on the radiochemical yield (RCY) allowed us to identify a suitable procedure for this. Four PET tracers and three synthons could be radiolabeled in substantially higher RCYs (up to 2.5-fold), even from lower precursor amounts, using this procedure. Encouraged by these results, we applied our low basicity method to the radiolabeling of highly base-sensitive tetrazines, which cannot be labeled using state-of-art direct aliphatic 18F-labeling procedures. Labeling succeeded in RCYs of up to 20%. We believe that our findings facilitate PET tracer development by opening the path towards simple and direct SN2 18F-fluorination of base-sensitive substrates.

Keywords

Fluorine-18
aliphatic radiolabeling
anion-exchange
QMA
base sensitivity
elution conditions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.