Single-Cell Adhesion Force Mapping of a Highly Sticky Bacterium in Liquid

18 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The highly sticky bacterium Acinetobacter sp. Tol 5 adheres to various material surfaces via its cell surface nanofiber protein, AtaA. This adhesiveness has only been evaluated based on the amount of cells adhering to a surface. In this study, the adhesion force mapping of a single Tol 5 cell in liquid using the quantitative imaging mode of atomic force microscopy (AFM) revealed that the strong adhesion of Tol 5 was several nanonewtons, which was outstanding compared with other adhesive bacteria. The adhesion force of a cell became stronger with the increase in AtaA molecules present on the cell surface. Many fibers of peritrichate AtaA molecules simultaneously interact with a surface, strongly attaching the cell to the surface. The adhesion force of a Tol 5 cell was drastically reduced in the presence of 1% casamino acids but not in deionized water (DW), although both liquids decrease the adhesiveness of Tol 5 cells, suggesting that DW and casamino acids inhibit the cell approaching step and the subsequent direct interaction step of AtaA with surfaces, respectively. Heterologous production of AtaA provided non-adhesive Acinetobacter baylyi ADP1 cells with a strong adhesion force to AFM tip surfaces of silicon and gold.

Keywords

bacteria
AFM
single cell analysis
cell adhesion
autotransporters

Supplementary materials

Title
Description
Actions
Title
Graphical abstract
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.