Abstract
Neutral titanium oxide clusters of up to 1 nm in diameter (TiO2)n, with n < 10, are produced in a laser vaporization source and subsequently ionized by a sequence of femtosecond laser pulses. Using 400 nm pump, 800 nm probe lasers, the excited state lifetimes of neutral (TiO2)n clusters are measured. All clusters exhibit a rapid relaxation lifetime of ~30 fs, followed by a sub-picosecond lifetime that we attribute to carrier recombination. The excited state lifetimes oscillate with size, with even numbered clusters possessing longer lifetimes. Density functional theory calculations show the excited state lifetimes are correlated with electron-hole pair localization or polaron-like formation in the excited states of neutral clusters. Thus, structural rigidity is suggested as a feature for extending excited state lifetimes in titania materials.
Supplementary materials
Title
Sayres TiO2 JPCL Supplemental
Description
Actions