Coordination Cages Transport Molecular Cargoes Across Liquid Membranes

16 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemical purifications are critical processes across many industries, requiring 10 - 15% of humanity’s global energy budget1,2. Coordination cages are able to catch and release guest molecules based upon their size and shape3,4, providing a new technological basis for achieving chemical separation. Here we show that aqueous solutions of FeII4L6 and CoII4L4 cages can be used as liquid membranes. Selective transport of complex hydrocarbons across these membranes enabled the separation of target compounds from mixtures under ambient conditions. The kinetics of cage-mediated cargo transport are governed by guest binding affinity. Using sequential transport across two consecutive membranes, target compounds were isolated from a mixture in a size-selective fashion. The selectivities of both cages thus enabled a two-stage separation process to isolate a single compound from a mixture of physicochemically similar molecules.

Keywords

Supramolecular coordination cages

Supplementary materials

Title
Description
Actions
Title
Nature ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.