Assessing the Accuracy of the SCAN Functional for Water Through a Many-Body Analysis of the Adiabatic Connection Formula

09 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a systematic analysis of the accuracy of a series of SCANα functionals for water, with varying fractions (α) of exact exchange, which are constructed through the adiabatic connection formula. Our results indicate that that all SCANα functionals exhibit substantial errors in the representation of the water 2-body energies. Importantly, the inclusion of exact exchange is found to have opposite effects on the ability of the SCANα functionals to describe the interaction energies of water clusters with 2-dimensional and 3-dimensional hydrogen-bonding arrangements. These errors are found to directly affect the ability of the SCANα functionals to describe the structure of liquid water at ambient conditions, which is investigated using explicit many-body models (MB-SCANα) derived from the corresponding SCANα data. In particular, it is found that all MB-SCANα models predict a more compact first hydration shell, which results in a denser liquid with a more ice-like structure. These ap- parent opposite trends can be explained by the inability of all SCANα functionals to provide a balanced description of the water 2B and 3B energies at the fundamental level. The analyses presented in this study provide new insights that can guide future developments of improved exchange-correlation functionals for water.

Keywords

water
density functional theory
adiabatic connection formula
many-body interactions
many-body models
exchange-correlation functionals

Supplementary materials

Title
Description
Actions
Title
supporting info
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.