Functional Group Identification for FTIR Spectra Using Image-Based Machine Learning Models

11 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fourier Transform Infrared Spectroscopy (FTIR) is a ubiquitous spectroscopic technique. Spectral interpretation is a time-consuming process, but it yields important information about functional groups present in compounds and in complex substances. We develop a generalizable model via a machine learning (ML) algorithm using Convolutional Neural Networks (CNNs) to identify the presence of functional groups in gas phase FTIR spectra. The ML models will reduce the amount of time required to analyze functional groups and facilitate interpretation of FTIR spectra. Through web scraping, we acquire intensity-frequency data from 8728 gas phase organic molecules within the NIST spectral database and transform the data into images. We successfully train models for 15 of the most common organic functional groups, which we then determine via identification from previously untrained spectra. These models serve to expand the application of FTIR measurements for facile analysis of organic samples. Our approach was done such that we have broad functional group models that inference in tandem to provide full interpretation of a spectrum. We present the first implementation of ML using image-based CNNs for predicting functional groups from a spectroscopic method.

Keywords

machine
learning
FTIR
spectroscopy
convolutional neural network
CNN
ML
spectra
infrared
functional groups

Supplementary materials

Title
Description
Actions
Title
ML functional group ID in FTIR spectra
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.