Towards an Understanding of Ligand Induced Functional Conformational Changes of MexB Efflux Transporter

10 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

MexB, an RND-superfamily efflux pump, plays a vital role in conferring resistance to cytotoxic molecules, including antibiotics, upon Gram-negative bacteria. Although the principal mechanistic elements of switching between the access, binding and extrusion conformers of the protomers of tripartite efflux transporters have been described previously, details surrounding the further mechanism that ends in either substrate extrusion or pump inhibition are limited to observations based on the type of ligand bound to the transporter. A central but missing link in the structure/mechanism relationship is a description of how ligand-induced conformational changes in the presence of a membrane and changing transporter protonation state lead to either substrate extrusion or inhibition of the pump. Here, we report that differences in conformational changes are governed by ligand binding to the transporter. The current study describes important new information about ligand-induced structural rearrangements and conformational changes of MexB in relation to the protonation state of critical acidic residues. We used tetracycline (TET) as a model substrate of MexB and phenylalanine-arginine beta-naphthylamide (PAβN) as a model inhibitor of MexB to study the aforementioned conformational changes. This new information will contribute to the design of new, effective and selective efflux pump inhibitors that could play key roles in reversing antimicrobial resistance.

Keywords

MexB efflux pump transporter
molecular dynamics simulations
conformational changes
Ligand binding
phenylalanyl-arginine-beta-naphthylamide
tetracycline

Supplementary materials

Title
Description
Actions
Title
Chemrxiv MexB Manuscript SI Documenet 2021
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.