The Orbital Picture of the First Dipole Hyperpolarizability from Many-Body Response Theory

03 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present an approach for obtaining a molecular orbital picture of the first dipole hyperpolarizability from correlated many-body electronic structure methods. Ab initio calculations of β rely on quadratic response theory, which
recasts the sum-over-all-states expression of β into a closed-form expression by calculating a handful of first- and
second-order response states; for resonantly enhanced β , damped response theory is used. These response states are
then used to construct second-order response reduced one-particle density matrices (1PDMs), which, upon visual-
ization in terms of natural orbitals (NOs), facilitate a rigorous and black-box mapping of the underlying electronic
structure with β. We explain the interpretation of different components of the response 1PDMs and the corresponding
NOs within both the undamped and damped response theory framework. We illustrate the utility of this new tool by
deconstructing β for cis-difluoroethene, para-nitroaniline, and hemibonded OH . +H 2 O complex, computed within the
framework of coupled-cluster singles and doubles response theory, in terms of the underlying response 1PDMs and
NOs for a range of frequencies.

Keywords

sum-frequency generation
first dipole hyperpolarizability
natural orbitals
molecular orbitals
response theory
coupled cluster
wave-function analysis

Supplementary materials

Title
Description
Actions
Title
si-ccsd-1hpol
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.