Indirect Red and Near-Infrared Z-to-E Photoisomerization of ortho-Functionalized Azobenzenes via Triplet Energy Transfer

02 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Designing azobenzene photoswitches capable of selective and efficient photoisomerization by long wavelength excitation is a long-standing challenge. Indirect excitation can expand the properties of the photoswitching system beyond the intrinsic limits of azobenzenes. Herein, a rapid Z-to-E isomerization of two ortho-functionalized azobenzenes with near-unity photoconversion was facilitated via triplet energy transfer upon red and near-infrared (up to 770 nm) excitation of porphyrin photosensitizers in catalytic micromolar concentrations. Our results indicate that the whole process of triplet-sensitized isomerization is strongly entropy-driven. This ensures efficient Z-to-E photoswitching even when the azobenzene triplet energy is considerably higher (>200 meV) than for the sensitizer, which is the key for the expansion of excitation wavelengths into the near-infrared spectral range.

Keywords

azobenzene
photoswitch
triplet state
triplet energy transfer
isomerization
entropy
energy transfer
photosensitizer
porphyrin
phosphorescence
spectroscopy
functional materials
near-infrared

Supplementary materials

Title
Description
Actions
Title
Isokuortti ChemRxiv SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.