Bottom-up Fabrication and Atomic-scale Characterization of Triply-linked, Laterally π-Extended Porphyrin Nanotapes

01 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Porphyrin nanotapes (Por NTs) have attracted vast interest as potential molecular wires thanks to their exceptional electronic properties. Recently, Por NTs have been synthesized by solution-based methods, demonstrating high versatility and great potential for technological applications. However, their synthesis is tedious and their characterization limited by low solubility and stability. Here, we report the first example of meso-meso triply-fused Por NTs, which are prepared from a readily available Por precursor through a two-step synthesis on Au(111). The structural and electronic properties of individual Por NTs are addressed, both on Au(111) and on a thin insulating NaCl layer, by high-resolution scanning probe microscopy/spectroscopy complemented by density functional theory calculations.

Keywords

Porphyrin Nanotape
on surface synthesis
open-shell

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.