Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of efficient models for predicting specific properties through machine learning is of great importance for the innovation of chemistry and material science. However, predicting electronic structure properties like frontier molecular orbital HOMO and LUMO energy levels and their HOMO-LUMO gaps from the small-sized molecule data to larger molecules remains a challenge. Here we develop a multi-level attention strategy that enables chemical interpretable insights to be fused into multi-task learning of up to 110,000 records of data in QM9 for random split evaluation. The good transferability for predicting larger molecules outside the training set is demonstrated in both QM9 and Alchemy datasets. The efficient and accurate prediction of 12 properties including dipole moment, HOMO, and Gibbs free energy within chemical accuracy is achieved by using our specifically designed interpretable multi-level attention neural network, named as DeepMoleNet. Remarkably, the present multi-task deep learning model adopts the atom-centered symmetry functions (ACSFs) descriptor as one of the prediction targets, rather than using ACSFs as input in the conventional way. The proposed multi-level attention neural network is applicable to high-throughput screening of numerous chemical species to accelerate rational designs of drug, material, and chemical reactions.

Keywords

multi-level attention
deep learning
QM9
ALCHEMY

Supplementary materials

Title
Description
Actions
Title
SI-MTL-submission-6-30-final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.