Abstract
Humans are exposed to thousands of potentially toxic chemicals including environmental chemicals such as industrial wastes, food products, solvents, air pollutants, fertilizers, pesticides, insecticides, carcinogens, drugs, metals/metalloids, and other industrial chemicals. Approximately 300,000 such chemicals currently in use, unfortunately little is known about their potential toxicity. Determining human toxicity potential of chemicals remains a challenge due to a substantial resource required to assess a chemical in-vivo, and only a few thousand single chemicals in commercial use has been evaluated. In this study, to predict the environmental chemical toxicity, we developed a new hybrid neural network (HNN) deep learning model consisting of a Convolutional Neural Network (CNN) and multilayer perceptron (MLP) type feed forward neural network (FFNN). Our HNN deep learning model trained based on thousands of chemicals, presented the best performance for majority of the cases. Taken together, our hybrid HNN deep learning models has a wide applicability in the prediction of toxicity of any chemical category and its mixtures.