A Combined Photobiological-Photochemical Route to C10 Cycloalkane Jet Fuels from Carbon Dioxide via Isoprene

19 February 2021, Version 1

Abstract

The hemiterpene isoprene is a volatile C5 hydrocarbon, with industrial applications. It is generated today from fossil resources, but can also be made in biological processes. We have utilized engineered photosynthetic cyanobacteria for direct, light-driven production of bio-isoprene from carbon dioxide, and show that isoprene in a subsequent photochemical step, using simulated or natural solar light, can be dimerized into limonene, paradiprene, and isomeric C10H16 hydrocarbons (monoterpenes) in very high yields (above 90% after 44 hours) under sensitized conditions. The optimal sensitizer in our experiments is di(naphth-1-yl)methanone which we can use with a loading of merely 0.1 mol%, and it is easily recycled for subsequent photodimerization cycles. The isoprene dimers generated are a mixture of [2+2], [4+2] and [4+4] cycloadducts, and after hydrogenation this mixture is nearly ideal as a jet fuel drop-in. Importantly, the photodimerization can be carried out at ambient conditions. The high content of hydrogenated [2+2] dimers in our isoprene dimer mix lowers the flash point below the threshold (38 °C), yet, these dimers can be converted thermally into [4+2] and [4+4] dimers. When hydrogenated these monoterpenoids fully satisfy the criteria for drop-in jet fuels with regard to energy density, flashpoint, kinematic viscosity, density, and freezing point.

Keywords

Aviation Fuels
Cyanobacteria
Isoprene
Solar fuels
Triplet Sensitization
DFT Computations

Supplementary materials

Title
Description
Actions
Title
Rana etal SI 210218FINAL
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.