Rational Design and Synthesis of Novel Dual Protacs for Simultaneous Degradation of EGFR and PARP

18 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Inspired by the success of dual targeting drugs, especially bispecific antibodies, we propose to combine the concept of protac and dual targeting to design and synthesize dual protac molecules with the function of degrading two completely different types of targets simultaneously. A library of novel dual targeting protac molecules have been rationally designed and prepared. A convergent synthetic strategy has been utilized to achieve high synthetic efficiency. These dual protac structures are characterized by using trifunctional natural amino acids as star-type core linkers to connect two independent inhibitors and E3 ligands together. In this study, gefitinib, olaparib, and CRBN or VHL E3 ligand were used as substrates to synthesize novel dual protacs. They successfully degraded both EGFR and PARP simultaneously in cancer cells. Being the first successful example of dual protacs, this technique will greatly widen the range of application of the protac method and open up a new field for drug discovery.

Keywords

Dual Protac
parp
protein degradation
star type linker
Protac
egfr

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.