Benchmarking of Density Functionals for Z-Azoarene Half-Lives via Automated Transition State Search

18 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular photoswitches use light to interconvert from a thermodynamically stable isomer into a meta-stable isomer. Chemists and materials scientists have applied photoswitches in photopharmacology, catalysis, and molecular solar thermal (MOST) materials. Visible-light-absorbing photoswitches are attractive because the relatively low-energy light minimizes undesired photochemical reactions and enables biological applications. Designing ideal photoswitches requires long-lived metastable states; predicting their half-lives with theory is difficult because it requires locating transition structures. We now report the EZ-TS code, which automates the prediction of rate constants for the thermal Z → E isomerization. We leverage EZ-TS to automate the location of the favored transition structure and to comprehensively benchmark the performance of 140 model chemistries against the experimental rate constants of 11 azoarenes. We used 28 density functionals [local spin density approximation, generalized gradient approximation, meta-GGA, hybrid GGA, hybrid meta-GGA], and five basis sets [6-31G(d), 6-31+G(d,p), 6-311+G(d,p), cc-pvdz, and aug-cc-pvdz]. The hybrid GGA functionals performed the best of all tested functional classes. We demonstrate that the mean absolute errors of 14 model chemistries approach chemical accuracy, and mPWPW91/6-31+G(d,p) achieves chemical accuracy and should be used with EZ-TS.

Keywords

Photochemistry
DFT
Quantum Chemistry
Azoarene isomerization benchmarking
photoswitch isomerization

Supplementary materials

Title
Description
Actions
Title
Azoarene benchmarking supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.