Increasing Al-Pair Abundance in SSZ-13 Zeolite via Zeolite Synthesis in the Presence of Alkaline Earth Metal Hydroxide Produces Hydro-Thermally Stable Cobalt and Pd-SSZ-13 Materials for Pollutant Abatement Applications

17 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We show that replacing alkaline (NaOH) for alkaline-earth metal (Sr(OH)2 as an example) in the synthesis of SSZ-13 zeolite with Si/Al~10 produces SSZ-13 zeolite material with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of Co(II) ions than the conventional one: this is the consequence of increased number of Al pairs in the structure induced by the +2 charge of Sr(II) cations in the synthesis gel that force two charge-compensating AlO4- motives to be closer together. We characterize the +2 state of Co(II) ions in these materials with infra-red spectroscopy and XANES measurements. They can be used for NOx pollutant adsorption from ambient air: the ones derived from SSZ-13 with higher Al pair content contain more cobalt(II) and thus, perform better as ambient-air NOx adsorbers before reaching full saturation capacity. Notably, Co(II)/SSZ-13 material with increased number of Al pairs is significantly more hydrothermally stable than its NaOH-derived analogue. Loading 1.7 wt% Pd into Co-SSZ-13 synthesized in the presence of Sr(II) produces a passive NOx adsorber (PNA) material that can be used for NOx adsorption from simulated diesel engine exhaust. The critical issue for these applications is hydrothermal stability of Pd-zeolites. Pd/SSZ-13 synthesized in NaOH media loses most of its PNA capacity after ~800 ⁰C hydrothermal aging in the flow of air and steam (10 hours in 10% H2O/air flow). The 1.7 wt% Pd/Co/SSZ-13 material with Si/Al ~10 does not lose its PNA capacity after extremely harsh aging at 850 and 900 ⁰C (10 hours in 10% H2O/Air flow) and loses only ~55% capacity after hydrothermal aging at 930 ⁰C. It shows considerably enhanced stability compared with previous record for Pd/FER, Pd/SSZ-39 and Pd/BEA materials that could survive hydrothermal aging no higher than 820 ⁰C. We herein reveal a new, simple, and scalable strategy for making remarkably (hydro)thermally stable metal-zeolite materials/catalysts with a number of useful applications.

Keywords

Zeolite SSZ-13
Aluminum pairs abundance in zeolite controlled by addition of alkaline earth metal hydroxide
Cobalt Palladium zeolite SSZ-13
Hydorthermal stability of zeolite SSZ-13
Nitric oxide adsorbers
Passive NOx adsorbers
Strontium and barium hydroxide

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.