Differential Effects of Modified Batrachotoxins on Voltage-gated Sodium Channel Fast and Slow Inactivation

16 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Voltage-gated sodium channels (NaVs), large transmembrane protein complexes responsible for the initiation and propagation of action potentials, are targets for a number of acute poisons. Many of these agents act as allosteric modulators of channel activity and serve as powerful chemical tools for understanding channel function. Batrachotoxin (BTX) is a steroidal amine derivative most commonly associated with poison dart frogs and is unique as a NaV ligand in that it alters every property of the channel, including threshold potential of activation, inactivation, ion selectivity, and ion conduction. Structure-function studies with BTX are limited, however, by the inability to access preparative quantities of this compound from natural sources. We have addressed this problem through de novo synthesis of BTX, which gives access to modified toxin structures. In this report, we detail electrophysiology studies of three BTX C20-ester derivatives against recombinant NaV subtypes (rat NaV1.4 and human NaV1.5). Two of these compounds, BTX-B and BTX-cHx, are functionally equivalent to BTX, hyperpolarizing channel activation and blocking both fast and slow inactivation. BTX-yne—a C20-n-heptynoate ester—is a conspicuous outlier, eliminating fast but not slow inactivation. This unique property qualifies BTX-yne as the first reported NaV modulator that separates inactivation processes. These findings are supported by functional studies with bacterial NaVs (BacNaVs) that lack a fast inactivation gate. The availability of BTX-yne should advance future efforts aimed at understanding NaV gating mechanisms and designing allosteric regulators of NaV activity.

Keywords

batrachotoxin, sodium channels, gating

Supplementary materials

Title
Description
Actions
Title
BTXyne SI 021421 submitted
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.