Dynamical Cooperativity of Ligand-Residue Interactions Evaluated with the Fragment Molecular Orbital Method

10 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By the splendid advance in computation power realized with Fugaku supercomputer, it has become possible to perform ab initio fragment molecular orbital (FMO) calculations for thousands of dynamical structures of a protein-ligand complex in a parallelized way. We have thus carried out the electron-correlated FMO calculations for a complex of the 3C-like (3CL) main protease (Mpro) of the new coronavirus (SARS-CoV-2) and its inhibitor N3 incorporating the structural fluctuations sampled by classical molecular dynamics (MD) simulation in hydrated condition. Along with a statistical evaluation of inter-fragment interaction energies (IFIEs) between the N3 ligand and surrounding amino-acid residues for a thousand of dynamical structure samples, we have applied in this study a novel approach based on the principal component analysis (PCA) and the singular value decomposition (SVD) to the analysis of IFIE data in order to extract the dynamically cooperative interactions between the ligand and residues. We have found that the relative importance of each residue is modified via the structural fluctuations and that the ligand is bound in the pharmacophore in a dynamical manner through collective interactions formed by multiple residues, thus providing a new insight into structure-based drug discovery

Keywords

SARS-CoV-2, COVID-19, Molecular dynamics (MD), Fragment molecular orbital (FMO) method, Structural fluctuation, Fugaku supercomputer, Principal component analysis (PCA), Singular value decomposition (SVD)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.