Size Isn’t Everything - Compositional Variation in Hybrid Organic-Inorganic Lead Halide Perovskites: Kinetically- versus Thermodynamically-controlled Synthesis

09 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The formation and study of a partial solid solution Az1-xFAxPbBr3, using ‘similar’ sized cations azetidinium (Az+) and formamidinium (FA+), was explored via mechanosynthesis and precipitation synthesis. The composition and lattice parameters of samples from both syntheses were analysed by 1H NMR and Rietveld refinement of the powder X-ray diffraction. A clear mismatch in the composition of the perovskite was found between the precipitated samples and the corresponding solutions. Such a mismatch was not observed for samples obtained via mechanosynthesis. The discrepancy suggests products are kinetically-controlled during precipitation, compared to thermodynamically-controlled mechanosynthesis. Furthermore, the cell volume as a function of composition in both 6H (Az-rich) and 3C (FA-rich) solid solutions suggests that FA+ is actually smaller than Az+, contradicting the literature. In the 3C (Az-poor) solid solutions, the extent of Az1-xFAxPbBr3 is unexpectedly smaller than Az1-xMAxPbBr3, again in contradiction to the expectation based on the reported cation sizes. These results indicate that other factors, as yet unidentified, must also contribute to the solid solution formation of organic-inorganic hybrid perovskites, not simply the relative sizes of the A-site cations.

Keywords

perovskite
Solid Solution
azetidinium

Supplementary materials

Title
Description
Actions
Title
ESI - final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.