Physical Property Scaling Relationships for Polyelectrolyte Complex Micelles

08 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Polyelectrolyte complex micelles (PCMs) are widely used in the delivery of hydrophilic payloads. Their attractive features include an ability to tune physical attributes, which are strongly dependent on the size and chemical structure of each polymer block. Neutral blocks drive nanoscale phase separation while charged blocks control micelle core size and stability. An understanding of physical property behavior controlled by block size is crucial when designing for use in dynamic or biological environments and provides a greater understanding of the physics of polyelectrolyte assembly. In this work, we use small angle x-ray scattering, and light scattering to determine precise scaling behaviors of physical micelle parameters for commonly used polyelectrolytes. We then compare our results to accumulated published data and theory to show strong agreement, suggesting these laws are universal for PCMs.

Keywords

Polyelectrolyte Complexation
Polyelectrolyte Complex Micelles
Scaling behavior
Micelles
Small Angle X-ray Scattering
Nanoparticles
Self-Assembly

Supplementary materials

Title
Description
Actions
Title
SI 2 compress
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.