Tailoring Electrostatic Attraction Interactions to Activate Persistent Room Temperature Phosphorescence from Doped Polyacrylonitrile Films

08 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Amorphous organic materials exhibiting room temperature phosphorescence (RTP) are good candidates for optoelectronic and biomedical applications. In this proof-of-concept work, we present a rational strategy to activate persistent RTP with a wide range of color from doped films in which electron-rich organic phosphor as donor while electron-deficient polymer matrix as acceptor through electrostatic attraction interactions. By tailoring electrostatic attraction interactions between the donor and acceptor, an ultralong lifetime of 968.1 ms is achieved for doped film TBB-6OMe@PAN. Control experiments combined with theoretical calculations demonstrate that the electrostatic attraction interactions between organic phosphor and polymer matrix should be responsible for the persistent RTP of doped films. Besides, doped films show reversible thermal response and excellent stability in water, indicating an advantage of electrostatic attraction over hydrogen bond in terms of practical application.

Keywords

room temperature phosphorescence
electrostatic attraction interaction
persistent RTP
donor and acceptor
amorphous organic RTP materials

Supplementary materials

Title
Description
Actions
Title
Supporting Information-20210207
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.