Facile Formation of Giant Elastin-like Polypeptide Vesicles as Synthetic Cells

05 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Creating a suitable compartment for synthetic cells has led the exploration of different cell chassis materials from phospholipids to polymer to protein-polymer conjugates. Currently, the majority of cell-like compartments are made of lipid molecules as the resulting membrane resembles that of a natural cell. However, cell-sized lipid vesicles are prone to physical and chemical stresses and can be unstable in hosting biochemical reactions within. Recently, peptide vesicles that are more robust and stable were developed as a new chassis material for synthetic cells. Here we demonstrate the facile and robust generation of giant peptide vesicles made of elastin-like polypeptides (ELPs) by using an emulsion transfer method. We show that these peptide vesicles can stably encapsulate molecules and can host cell-free expression reactions. We also demonstrate membrane incorporation of another amphiphilic ELP into existing peptide vesicles. Since ELPs are genetically encoded, the approaches presented here provide exciting opportunities to engineer synthetic cell membranes.

Keywords

Elastin-like polypeptides
giant peptide vesicles
synthetic cells
reverse emulsion

Supplementary materials

Title
Description
Actions
Title
Figures
Description
Actions
Title
Supplementary figures ELP vesicles ChemRxiv 2021
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.