Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability

04 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solid-state hydrogen storage materials that are optimized for specific use cases could be a crucial facilitator of the hydrogen economy transition. Yet the discovery of novel hydriding materials has historically been a manual process driven by chemical intuition or experimental trial-and-error. Data-driven materials' discovery paradigms provide an alternative to traditional approaches, whereby machine/statistical learning (ML) models are used to efficiently screen materials for desired properties and significantly narrow the scope of expensive/time-consuming first-principles modeling and experimental validation. Here we specifically focus on a relatively new class of hydrogen storage materials, high entropy alloy (HEA) hydrides, whose vast combinatorial composition space and local structural disorder necessitates a data-driven approach that does not rely on exact crystal structures in order to make property predictions. Our ML model quickly screens hydride stability within a large HEA space and permits down selection for laboratory validation based not only on targeted thermodynamic properties, but also secondary criteria such as alloy phase stability and density. To experimentally verify our predictions, we performed targeted synthesis and characterization of several novel hydrides that demonstrate significant destabilization (70x increase in equilibrium pressure, 20 kJ/molH2 decrease in desorption enthalpy) relative to the benchmark HEA hydride, TiVZrNbHfHx. Ultimately, by providing a large composition space in which hydride thermodynamics can be continuously tuned over a wide range, this work will enable efficient materials selection for various applications, especially in areas such as metal hydride based hydrogen compressors, actuators, and heat pumps.

Keywords

High Entropy Alloys
Metal Hydrides
Materials Discovery
Computational Screening
Data Science
Machine Learning
Synthesis and Characterization

Supplementary materials

Title
Description
Actions
Title
rHEA allpredictions final
Description
Actions
Title
HEAH2SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.